This is a short answer type question as classified in NCERT Exemplar
For calculation purpose, in this situation we will neglect gravity because it is constant throughout will not affect the net restoring force.
Let in the equilibrium position, the spring has extended by an amount xo
Let displacement by spring is and string be x .
But string is extensible so only spring will contribute in extension x+x=2x
So net extension is 2x+xo
So force is F= 2T
T=kxo
F=2kxo
But when mass is lowered down further by x
F’=2T’ but spring length is 2x+xo
F’=2k (2x+xo)
Restoring force on the system
Frestoring=- (F’-F)
So using above equati
...more
This is a short answer type question as classified in NCERT Exemplar
For calculation purpose, in this situation we will neglect gravity because it is constant throughout will not affect the net restoring force.
Let in the equilibrium position, the spring has extended by an amount xo
Let displacement by spring is and string be x .
But string is extensible so only spring will contribute in extension x+x=2x
So net extension is 2x+xo
So force is F= 2T
T=kxo
F=2kxo
But when mass is lowered down further by x
F’=2T’ but spring length is 2x+xo
F’=2k (2x+xo)
Restoring force on the system
Frestoring=- (F’-F)
So using above equations
Frestoring= [2k (2x+x0)-2Kxo]=-4kx
Ma=-4kx
So a is directly proportional to negative displacement so it follows SHM.
So time period is T=
w= so T= 2
less
<div><div><div><div><p><span data-teams="true">This is a short answer type question as classified in NCERT Exemplar</span></p><p>For calculation purpose, in this situation we will neglect gravity because it is constant throughout will not affect the net restoring force.</p><p>Let in the equilibrium position, the spring has extended by an amount x<sub>o</sub></p><p>Let displacement by spring is and string be x .</p><p>But string is extensible so only spring will contribute in extension x+x=2x</p><p>So net extension is 2x+x<sub>o</sub></p><div><div><picture><source srcset="https://images.shiksha.com/mediadata/images/articles/1745500793phpfQTpqj_480x360.jpeg" media=" (max-width: 500px)"><img src="https://images.shiksha.com/mediadata/images/articles/1745500848phpNnHtRS_480x360.jpeg" alt="" width="136" height="138"></picture></div><div><p>So force is F= 2T</p><p>T=kx<sub>o</sub></p><p>F=2kx<sub>o</sub></p><p>But when mass is lowered down further by x</p><p>F’=2T’ but spring length is 2x+x<sub>o</sub></p><p>F’=2k (2x+x<sub>o</sub>)</p><p>Restoring force on the system</p><p>F<sub>restoring</sub>=- (F’-F)</p><p>So using above equations</p><div><div><picture><source srcset="https://images.shiksha.com/mediadata/images/articles/1745500848phpNnHtRS_480x360.jpeg" media=" (max-width: 500px)"><img src="https://images.shiksha.com/mediadata/images/articles/1745500848phpNnHtRS.jpeg" alt="" width="140" height="125"></picture></div><div><p>F<sub>restoring</sub>= [2k (2x+x<sub>0</sub>)-2Kx<sub>o</sub>]=-4kx</p><p>Ma=-4kx</p><p>So a is directly proportional to negative displacement so it follows SHM.</p><p>So time period is T=<span contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mrow> <mrow> <mrow> <mi>w</mi> </mrow> </mrow> </mfrac> </math> </span></p><p>w= <span contenteditable="false"> <math> <mroot> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn>4</mn> <mi>k</mi> </mrow> </mrow> <mrow> <mrow> <mi>m</mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mrow></mrow> </mroot> </math> </span>so T= 2<span contenteditable="false"> <math> <mi>π</mi> <mroot> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi>M</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> <mi>K</mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mrow></mrow> </mroot> </math> </span></p></div></div></div></div></div></div></div></div>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.