When a long glass capillary tube of radius 0.015 cm is dipped in a liquid, the liquid rises to a height of 15 cm within it. If the contact angle between the liquid and glass to close to 0°, the surface tension of the liquid, in milli Newton m?¹, is [ρ(liquid) = 900kgm?³, g = 10 ms?²] (Give answer in closest integer)

0 2 Views | Posted a month ago
Asked by Shiksha User

  • 1 Answer

  • A

    Answered by

    alok kumar singh | Contributor-Level 10

    a month ago

    The height of capillary rise is given by the formula:
    h = (2T cosθ) / (rρg)
    Given: h = 15 cm = 0.15 m, r = 0.015 cm = 1.5 × 10? m, ρ = 900 kg/m ³, g = 10 m/s², and θ ≈ 0° (so cosθ ≈ 1).
    We need to find the surface tension, T.
    T = (h r ρ g) / (2 cosθ)
    T = (0.15 * 1.5 × 10? * 900 * 10) / 2
    T = 0.10125 N/m
    The answer is required in milliNewton m? ¹, so we multiply by 1000.
    T = 101.25 mN/m.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post