An expression for a dimensionless quantity P is given by P = α β l o g e ( k t β t ) ;  where a and b are constants, x is distance; k is Boltzmann constant and t is the temperature. Then the dimensions of a will be:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mi>M</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msup> <msup> <mrow> <mi>L</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mi>T</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>[</mo> <mrow> <mi>M</mi> <msup> <mrow> <mi>L</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msup> <msup> <mrow> <mi>T</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>[</mo> <mrow> <mi>M</mi> <mi>L</mi> <msup> <mrow> <mi>T</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>[</mo> <mrow> <mi>M</mi> <msup> <mrow> <mi>L</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mi>T</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
3 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
R
4 months ago
Correct Option - 4
Detailed Solution:

P = α β l o g e ( k t β x )

k t β x = Dimensionless

β = k t x = [ M L 2 T 2 k 1 ] [ k ] [ L ]

α β = dimensionless

a = dimensionless of b

a = MLT-2

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

Since, x 2 α k T should be dimensionless.

So, dimension of  α , [ α ] = L 2 M L 2 T 2 = M 1 T 2

Dimension of  α β 2 should be that of W.

So, [ α β 2 ] = M L 2 T 2

[ β 2 ] = M L 2 T 2 M 1 T 2 = M 2 L 2 T 4 [ β ] = M L T 2

...Read more

The dimensional formula for energy E is [ML²T? ²].
The dimensional formula for the gravitational constant G is [M? ¹L³T? ²].
The ratio E/G has dimensions: [ML²T? ²] / [M? ¹L³T? ²] = [M²L? ¹T? ].

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics Units and Measurement 2025

Physics Units and Measurement 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering