23. Find the intervals in which the function f given by f(x) = 2x3 – 3x2 – 36x + 7 is
(a) Increasing (b) Decreasing
23. Find the intervals in which the function f given by f(x) = 2x3 – 3x2 – 36x + 7 is
(a) Increasing (b) Decreasing
-
1 Answer
-
We have, f (x) = 2x3- 3x2- 36x + 7.
So, f (x) =
= 6 (x2-x- 6).
= 6 (x2- 3x + 2x- 6)
= 6 [x (x- 3) + 2 (x- 3)]
= 6 (x- 3) (x + 2).
At, f (x) = 0
6 (x- 3) (x + 2) = 0.
So, when x- 3 = 0 or x + 2 = 0.
x = 3 or x = -2.
Hence we an divide the real line into three disjoint internal
I
At x ∈
f (x) = ( + ve) ( -ve) ( -ve) = ( + ve) > 0.
So, f (x) is strictly increasing in
At, x∈ ( -2,3),
f (x) = ( + ve) ( + ve) ( -ve) = ( -ve) < 0.
So, f (x) is strictly decreasing in ( -2,3).
At, x ∈
f (x) = ( + ve) ( + ve) ( + ve) = ( + )ve> 0.
So, f (x) is strictly increasing in
∴ (a) f (x) is strictly increasing in
(b) f (x) is
...more
Similar Questions for you
y (x) = ∫? (2t² - 15t + 10)dt
dy/dx = 2x² - 15x + 10.
For tangent at (a, b), slope is m = dx/dy = 1 / (dy/dx) = 1 / (2a² - 15a + 10).
Given slope is -1/3.
2a² - 15a + 10 = -3
2a² - 15a + 13 = 0 (The provided solution has 2a²-15a+7=0, suggesting a different problem or a typo)
Following the image: 2a² - 15a + 7 = 0
(2a - 1) (a - 7) = 0
a = 1/2 or a = 7.
a = 1/2 Rejected as a > 1. So a = 7.
b = ∫? (2t² - 15t + 10)dt = [2t³/3 - 15t²/2 + 10t] from 0 to 7.
6b = [4t³ - 45t² + 60t] from 0 to 7 = 4 (7)³ - 45 (7)² + 60 (7) = 1372 - 2205 + 420 = -413.
|a + 6b| = |7 - 413| = |-406|
f' (c) = 1 + lnc = e/ (e-1)
lnc = e/ (e-1) - 1 = (e - (e-1)/ (e-1) = 1/ (e-1)
c = e^ (1/ (e-1)

Area
3x2 = 10
x = k
3k2 = 10
By truth table
So F1 (A, B, C) is not a tautology
Now again by truth table
So F2 (A, B) be a tautology.
From option let it be isosceles where AB = AC then
=
Now ar
then
So .
Hence be equilateral having each side of length
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers