By equating the corresponding elements of the matrices we get,
x+ y = 6 (I)
5 + Z = 5
xy = 8
x
putting eq in (1) we get
+ y = 6.
8 + y2 = 6y
y2 6y + 8 = 0.
y2 - 4y - 2y + 8 = 0
y (y-4) -2 (y-4) = 0
(y-4) (y-2) = 0
y= 4 0r y = 2.
When y = 4,x= 6-y = 6-4 = and z = 0.
Wheny = 2,x = 6-y = 6-2 = 4 and z = 0.
By equating the corresponding elements of the matrices we get,
x+ y + z = 9 -------(i)
x + z = 7 --------(ii)
y + z = 7 -------(iii)
Subtracting eqn (3) from (1) and (2) from (1) we get,
x + y + z -y - z = 9 - 7 and x
...more
(i)
corresponding
By equating the elements of the matrices, we get,
x= 1
y= 4
z= 3.
(ii)
By equating the corresponding elements of the matrices we get,
x+ y = 6 (I)
5 + Z = 5
xy = 8
x
putting eq in (1) we get
+ y = 6.
8 + y2 = 6y
y2 6y + 8 = 0.
y2 - 4y - 2y + 8 = 0
y (y-4) -2 (y-4) = 0
(y-4) (y-2) = 0
y= 4 0r y = 2.
When y = 4,x= 6-y = 6-4 = and z = 0.
Wheny = 2,x = 6-y = 6-2 = 4 and z = 0.
By equating the corresponding elements of the matrices we get,
x+ y + z = 9 -------(i)
x + z = 7 --------(ii)
y + z = 7 -------(iii)
Subtracting eqn (3) from (1) and (2) from (1) we get,
x + y + z -y - z = 9 - 7 and x + y + z - x - z = 9 - 5
x = 2 and y = 4 .
Putting x = 2 in eqn (2)
2 + z = 5
z = 5 - 2 = 3.
So, x = 2,y = 4, z = 3.
less
<p><strong>(i)</strong> <span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>4</mn></mtd><mtd columnalign="left"><mn>3</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mi>x</mi></mtd><mtd columnalign="left"><mn>5</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mi>y</mi></mtd><mtd columnalign="left"><mi>z</mi></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn></mtd><mtd columnalign="left"><mn>5</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p>corresponding</p><p>By equating the elements of the matrices, we get,</p><p>x= 1</p><p>y= 4</p><p>z= 3.</p><p><strong>(ii)</strong> <span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd columnalign="center"><mn>2</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>5</mn><mo>+</mo><mi>z</mi></mtd><mtd columnalign="center"><mi>x</mi><mi>y</mi></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>6</mn></mtd><mtd columnalign="left"><mn>2</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>5</mn></mtd><mtd columnalign="left"><mn>8</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p>By equating the corresponding elements of the matrices we get,</p><p>x+ y = 6 (I)</p><p>5 + Z = 5 <span title="Click to copy mathml"><math><mrow><mo>⇒</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>z</mi><mo>=</mo><mn>5</mn><mo>−</mo><mn>5</mn><mo>⇒</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>z</mi><mo>=</mo><mn>0</mn></mrow></math></span></p><p>xy = 8</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> x <span title="Click to copy mathml"><math><mrow><mo>=</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mi>y</mi></mrow></mfrac></mrow></math></span> <span title="Click to copy mathml"><math><mrow><mo>→(2)</mo></mrow></math></span></p><p>putting eq<span title="Click to copy mathml"><math><mrow><msup><mrow></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></math></span> in (1) we get</p><p><span title="Click to copy mathml"><math><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mi>y</mi></mrow></mfrac></mrow></math></span> + y = 6.</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> 8 + <em>y</em><sup>2</sup> = 6y</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> <em>y</em><sup>2</sup> 6y + 8 = 0.</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> <em>y</em><sup>2</sup> - 4y - 2y + 8 = 0</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> y (y-4) -2 (y-4) = 0</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> (y-4) (y-2) = 0</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> y= 4 0r y = 2.</p><p>When y = 4,x= 6-y = 6-4 = and z = 0.</p><p>Wheny = 2,x = 6-y = 6-2 = 4 and z = 0.</p><div><div><picture><source srcset="https://images.shiksha.com/mediadata/images/articles/1732685340phpVUFUzz_480x360.jpeg" media="(max-width: 500px)"><img src="https://images.shiksha.com/mediadata/images/articles/1732685340phpVUFUzz.jpeg" alt="" width="181" height="96"></picture></div></div><p>By equating the corresponding elements of the matrices we get,</p><p>x+ y + z = 9 -------(i)</p><p>x + z = 7 --------(ii)</p><p>y + z = 7 -------(iii)</p><p>Subtracting eq<sup>n</sup> (3) from (1) and (2) from (1) we get,</p><p>x + y + z -y - z = 9 - 7 and x + y + z - x - z = 9 - 5</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> x = 2 and y = 4 .</p><p>Putting x = 2 in eq<sup>n</sup> (2)</p><p>2 + z = 5</p><p><span title="Click to copy mathml"><math><mrow><mo>⇒</mo></mrow></math></span> z = 5 - 2 = 3.</p><p>So, x = 2,y = 4, z = 3.</p>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.