64. If A = , prove that An = , n ∈ N.
64. If A = , prove that An = , n ∈ N.
-
1 Answer
-
We have,
(E) P (n) : If A =
]. then An = n ? N.[ 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 ] P (1) : A1=
=[ 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 3 1 − 1 ] =[ 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 ] [ ]1 1 1 1 1 1 1 1 1 So, the result holds true for n = 1.
Let the result be for n = k. So,
P (k): Au=
[ 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 ] Then P (k+1): Ak + 1 = Ak. A =
[ 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 3 k − 1 ] [ ]1 1 1 1 1 1 1 1 1 =
[ 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 3 k − 1 + 3 k − 1 + 3 k − 1 ] = Ak + 1 =
[ 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 3 ( k + 1 ) − 1 ] The result holds for n = k + 1. Hence,
An =
holds for all natural number.[ 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 3 n − 1 ]
Similar Questions for you
Let
Given
∴ x1 + z1 = 2 … (2)
x2 + z2 = 0 … (3)
x3 + z3 = 0 … (4)
Given
⇒ – x1 + z1 = −4 … (5)
–x2 + z2 = 0 &nbs
g (x) = px + q
Compare 8 = ap2 …………… (i)
-2 = a (2pq) + bp
0 = aq2 + bq + c
=>4x2 + 6x + 1 = apx2 + bpx + cp + q
=> Andhra Pradesh = 4 ……………. (ii)
6 = bp
1 = cp + q
From (i) & (ii), p = 2, q = -1
=> b = 3, c = 1, a = 2
f (x) = 2x2 + 3x + 1
f (2) = 8 + 6 + 1 = 15
g (x) = 2x – 1
g (2) = 3
Kindly consider the following figure
B = (I – adjA)5
Kindly consider the following figure
B = (I – adjA)5
System of equation is
R1 – 2 R2, R3 – R2
System of equation will have no solution for = -7.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers