91. A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    Let ‘x’ cm be the length of side of the square to be cut off from the rectangular surface

    Then, the volume v of the box is v = (45 - 2x) (24 - 2x) x

    = 1080x - 138x2 + 4x3

    So,  dvdx=1080276x+12x2

    d2dx2=276+24x

    At,  dvdx=01080276x+12x2=0

    x2- 23x + 90 = 0

    x2- 5x - 18x + 90 = 0

    x (x - 5) - 18 (x - 5) = 0

    (x- 5) (x- 18) = 0

     x = 5 and x = 18

    At x = 18, breadth = 24 - 2 (18) = 24 - 36 = -12 which is not possible

    At,  x=5, d2vdx2=276+24 (5)=276+120=150<0

    Hence, x = 5 is the point of maximum

    So, ‘5’ cm length of square seeds to be cut from each corner of the secthgle

Similar Questions for you

R
Raj Pandey

y (x) = ∫? (2t² - 15t + 10)dt
dy/dx = 2x² - 15x + 10.
For tangent at (a, b), slope is m = dx/dy = 1 / (dy/dx) = 1 / (2a² - 15a + 10).
Given slope is -1/3.
2a² - 15a + 10 = -3
2a² - 15a + 13 = 0 (The provided solution has 2a²-15a+7=0, suggesting a different problem or a typo)
Following the image: 2a² - 15a + 7 = 0
(2a - 1) (a - 7) = 0
a = 1/2 or a = 7.
a = 1/2 Rejected as a > 1. So a = 7.
b = ∫? (2t² - 15t + 10)dt = [2t³/3 - 15t²/2 + 10t] from 0 to 7.
6b = [4t³ - 45t² + 60t] from 0 to 7 = 4 (7)³ - 45 (7)² + 60 (7) = 1372 - 2205 + 420 = -413.
|a + 6b| = |7 - 413| = |-406|

...more
R
Raj Pandey

f' (c) = 1 + lnc = e/ (e-1)
lnc = e/ (e-1) - 1 = (e - (e-1)/ (e-1) = 1/ (e-1)
c = e^ (1/ (e-1)

R
Raj Pandey

C D = ( 1 0 + x 2 ) 2 ( 1 0 x 2 ) 2 = 2 1 0 | x |

Area 

= 1 2 × C D × A B = 1 2 × 2 1 0 | x | ( 2 0 2 x 2 )

1 0 x 2 = 2 x

3x2 = 10

 x = k

3k2 = 10

V
Vishal Baghel

By truth table

So F1 (A, B, C) is not a tautology

Now again by truth table

So      F2 (A, B) be a tautology.

V
Vishal Baghel

From option let it be isosceles where AB = AC then

x = r 2 ( h r ) 2            

r 2 h 2 r 2 + 2 r h

x = 2 h r h 2 . . . . . . . . ( i )

 Now ar ( Δ A B C ) = Δ = 1 2 B C × A L

Δ = 1 2 × 2 2 h r a 2 × h        

then  x = 2 × 3 r 2 × r 9 r 2 4 = 3 2 r f r o m ( i )

B C = 3 r    

So A B = h 2 + x 2 = 9 r 2 4 + 3 r 2 4 = 3 r .

Hence Δ be equilateral having each side of length 3 r .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post