96. For each of the differential equations given below, indicate its order and degree (if defined):

(i)d2ydx2+5x(dydx)26y=logx(ii)(dydx)34(dydx)2+7y=sinx(iii)d4ydx4sind3ydx3=0

2 Views|Posted 8 months ago
Asked by Shiksha User
1 Answer
V
8 months ago

(i) Given: Differential equation   d2ydx2+5x(dydx)26y=logx

The highest order derivative present in this differential equation is d2ydx2 and hence order of this differential equation if 2.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative d2ydx2 is 1.

Therefore, Orde

...Read more

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

l + m – n = 0

l + m = n . (i)

l2 + m2 = n2

Now from (i)

l2 + m2 = (l + m)2

=> 2lm = 0

=>lm = 0

l = 0 or m = 0

=> m = n Þ l = n

if we take direction consine of line

0 , 1 2 , 1 2 a n d 1 2 , 0 , 1 2

cos a = 1 2              

s i n 4 α + c o s 4 α = ( 3 2 ) 4 = ( 1 2 ) 4 = 9 1 6 + 1 1 6 = 1 0 1 6 = 5 8  

...Read more

d y 1 + y 2 = 2 e x d x 1 + ( e x ) 2 + C

t a n 1 y = 2 t a n 1 e x + C

x = 0, y = 0

0 = 2 t a n 1 + C

C = + π 2

now at x = l n 3

t a n 1 y = 2 t a n 1 ( e l n 3 ) + π 2

6 ( y ' ( 0 ) + ( y ( l n 3 ) ) 2 ) = 6 ( 1 + 1 3 ) = 4

x 1 = l i m x 2 x n e x 3 x n e x x n e x , p u t x n e x = t

x 2 = l i m x c o t 1 ( x + 1 x ) s e c 1 ( ( 2 x + 1 x 1 ) x )

x 2 = 2 π l i m x t a n 1 ( x + 1 + x )

x 2 = 2 π . π 2 = 1

dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers

Learn more about...

Maths Differential Equations 2021

Maths Differential Equations 2021

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering