99. Prove that x2y2=c(x2+y2)2  is the general equation of the differential equation  (x33xy2)dx=(y33x2y)dy  where c is a parameter.

19 Views|Posted 8 months ago
Asked by Shiksha User
1 Answer
V
8 months ago

dydx=x33xy2y33x2y..........(1)

This is a homogenous equation. To simplify it, we need to make the substitution as:

y=vxddx(y)=ddx(vx)dydx=v+xdvdx

Substituting the values of y and dvdx in equation (1), we get:

v+xdvdx=x33x(vx)2(vx)33x2(vx)v+xdvdx=13v2v33vxdvdx=13v2v33vvxdvdx=13v2v(v33v)v33vxdvdx=1v4v33v(v33v1v4)dv=dxx

Integrating both sides, we get:

(v33v1v4)dv=logx+logC'.........(2)Now,(v33v1v4)dv=v3dv1v43vdv1v4(v33v1v4)dv=I13I2,Where,I1=v3dv1v4andI2=vdv1v4...........(3)

Let,1v4=t.ddv(1v4)=dtdv4v3=dtdvv3dv=dt4Now,I1=dt4=logt=14log(1v4)

And,I2=vdv1v4=vdv1(v2)2Let,v2=p.ddv(v2)=dpdv2v=dpdvvdv=p2I2=12dp1p2=12*2log|1+p1p|=14log|1+v21v2|

Substituting the values of I1 and I2 in equation (3), we get:

(v33v1v4)dv=14log(1v4)34log|1+v21v2|

Therefore, equation (2) becomes:

14log(1v4)34log|1+v21v2|=logx+logC'14log[(1v4)(1+v21v2)]=logC'x(1+v2)4(1v2)2=(C'x)4(1+y2x2)4(1y2x2)2=1C'4x4(x2+y2)4x4(x2y2)2=1C'4x4(x2y2)2=C'4(x2+y2)4(x2y2)=C'2(x2+y2)2x2y2=C(x2+y2)2,whereC=C'2

Hence, the given result is proved.

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

l + m – n = 0

l + m = n . (i)

l2 + m2 = n2

Now from (i)

l2 + m2 = (l + m)2

=> 2lm = 0

=>lm = 0

l = 0 or m = 0

=> m = n Þ l = n

if we take direction consine of line

0 , 1 2 , 1 2 a n d 1 2 , 0 , 1 2

cos a = 1 2              

s i n 4 α + c o s 4 α = ( 3 2 ) 4 = ( 1 2 ) 4 = 9 1 6 + 1 1 6 = 1 0 1 6 = 5 8  

...Read more

d y 1 + y 2 = 2 e x d x 1 + ( e x ) 2 + C

t a n 1 y = 2 t a n 1 e x + C

x = 0, y = 0

0 = 2 t a n 1 + C

C = + π 2

now at x = l n 3

t a n 1 y = 2 t a n 1 ( e l n 3 ) + π 2

6 ( y ' ( 0 ) + ( y ( l n 3 ) ) 2 ) = 6 ( 1 + 1 3 ) = 4

x 1 = l i m x 2 x n e x 3 x n e x x n e x , p u t x n e x = t

x 2 = l i m x c o t 1 ( x + 1 x ) s e c 1 ( ( 2 x + 1 x 1 ) x )

x 2 = 2 π l i m x t a n 1 ( x + 1 + x )

x 2 = 2 π . π 2 = 1

dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers

Learn more about...

Maths Differential Equations 2021

Maths Differential Equations 2021

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering