A line parallel to the straight line 2x-y=0 is tangent to the hyperbola x²/4 - y²/2 = 1 at the point (x₁,y₁). Then x₁²+5y₁² is equal to
A line parallel to the straight line 2x-y=0 is tangent to the hyperbola x²/4 - y²/2 = 1 at the point (x₁,y₁). Then x₁²+5y₁² is equal to
Option 1 -
6
Option 2 -
5
Option 3 -
8
Option 4 -
10
-
1 Answer
-
Correct Option - 1
Detailed Solution:Slope of tangent is 2, Tangent of hyperbola
x²/4-y²/2=1 at the point (x? , y? ) is xx? /4-yy? /2=1 (T=0)
Slope: x? /2y? =2 ⇒ x? =4y?
(x? , y? ) lies on hyperbola
⇒ x? ²/4-y? ²/2=1
From (1) and (2)
(4y? )²/4-y? ²/2=1 ⇒ 4y? ²-y? ²/2=1
⇒ 7y? ²=2 ⇒ y? ²=2/7
Now x? ²+5y? ² = (4y? )²+5y? ² = 21y? ² = 21×2/7=6
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r 2 < 5 r > 3 … (2)
–3 < r < 7 (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and
->
1 + sin2q = 7 – 7 sin2q
->8sin2q = 6
->
->

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒ β = 3.2
Ellipse passes through (2.4, 3.2)
⇒
&
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers