A tangent and a normal are drawn at the point P(2, -4) on the parabola y2 = 8x, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is eqal to :
A tangent and a normal are drawn at the point P(2, -4) on the parabola y2 = 8x, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is eqal to :
Equation of tangent at P (2, -4)
y (-4) = 4 (x + 2)
x + y + 2 = 0
So, A (-2, 0)
Equation of normal at P:
y + 4 = 1 (x – 2)
x – y = 6
So, B (-2, -8)
For square mid-point of AB = mid-point of PQ
So, 2a + b = -16
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r – 2 < 5 r > 3 … (2)
–3 < r < 7 … (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and &n

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering