A tangent and a normal are drawn at the point P(2, -4) on the parabola y2 = 8x, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is eqal to :
A tangent and a normal are drawn at the point P(2, -4) on the parabola y2 = 8x, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is eqal to :
Option 1 -
-12
Option 2 -
-18
Option 3 -
-16
Option 4 -
-20
-
1 Answer
-
Correct Option - 3
Detailed Solution:Equation of tangent at P (2, -4)
y (-4) = 4 (x + 2)
x + y + 2 = 0
So, A (-2, 0)
Equation of normal at P:
y + 4 = 1 (x – 2)
x – y = 6
So, B (-2, -8)
For square mid-point of AB = mid-point of PQ
So, 2a + b = -16
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r 2 < 5 r > 3 … (2)
–3 < r < 7 (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and
->
1 + sin2q = 7 – 7 sin2q
->8sin2q = 6
->
->

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒ β = 3.2
Ellipse passes through (2.4, 3.2)
⇒
&
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers