Consider a hyperbola H: x² - 2y² = 4. Let the tangent at a point P(4, √6) meet the x-axis at Q and latus rectum at R(x₁, y₁), x₁ > 0. If F is a focus of H which is nearer to the point P, then the area of ∆QFR is equal to :
Consider a hyperbola H: x² - 2y² = 4. Let the tangent at a point P(4, √6) meet the x-axis at Q and latus rectum at R(x₁, y₁), x₁ > 0. If F is a focus of H which is nearer to the point P, then the area of ∆QFR is equal to :
The equation is for a hyperbola: x²/4 - y²/2 = 1.
The eccentricity e is given by e = √ (1 + b²/a²) = √ (1 + 2/4) = √6/2.
The focus F is at (ae, 0), which is (2 * √6/2, 0) = (√6, 0).
The equation of the tangent at a point P (x? , y? ) is xx? /a² - yy? /b² = 1.
The equation of the tangent at P is given
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r – 2 < 5 r > 3 … (2)
–3 < r < 7 … (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and &n

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering