If two distinct chords of a parabola y2 = 4ax passing through (a, 2a) are bisected on the line x + y = 1, then the sum of integral values of the length of possible latus rectums is equal to
If two distinct chords of a parabola y2 = 4ax passing through (a, 2a) are bisected on the line x + y = 1, then the sum of integral values of the length of possible latus rectums is equal to
-
1 Answer
-
Any point on x + y = 1 can be taken as (t, 1 – t) The equation of chord with this as mid-point is y (1 – t) -2a (x + t) = (1 – t)2 – 4at
It passes through (a, 2a)
So, t2 – 2t + 2a2 – 2a + 1 = 0
This should have two distinct real roots.
So D > 0
So, length of latus rectum < 4 and 0 < a < 1
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r 2 < 5 r > 3 … (2)
–3 < r < 7 (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and
->
1 + sin2q = 7 – 7 sin2q
->8sin2q = 6
->
->

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒ β = 3.2
Ellipse passes through (2.4, 3.2)
⇒
&
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers