Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from O(0, 0) to the parabola P which meet P at S and R, then the area (in sq. units) of ΔSOR is equal to:
Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from O(0, 0) to the parabola P which meet P at S and R, then the area (in sq. units) of ΔSOR is equal to:
Option 1 -
32
Option 2 -
8√2
Option 3 -
16
Option 4 -
16√2
-
1 Answer
-
Correct Option - 3
Detailed Solution:Vertex (2,0), Focus (4,0). Parabola y²=4a (x-h) = 4 (2) (x-2) = 8 (x-2).
Tangents from O (0,0): T²=SS? (y (0)-4 (x+0)+16)²= (0-0+16) (y²-8x+16). No, this is for point on tangent.
Equation of tangent y=mx+a/m = m (x-2)+2/m. Passes through (0,0) so -2m+2/m=0 ⇒ m=±1.
Tangents y=x, y=-x. Points of contact S (4,4), R (4, -4).
Area of ΔSOR = ½ * base * height = ½ * 8 * 4 = 16.
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r 2 < 5 r > 3 … (2)
–3 < r < 7 (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and
->
1 + sin2q = 7 – 7 sin2q
->8sin2q = 6
->
->

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒ β = 3.2
Ellipse passes through (2.4, 3.2)
⇒
&
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers