Let tanα, tanβ and tanγ; α,β,γ ≠ (2n-1)π/2, n ∈ N be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of ΔABC coincides with origin and its orthocenter lies on y-axis, then the value of (cos(3α) + cos(3β) + cos(3γ)) / (cosα cosβ cosγ) is equal to ______.
Let tanα, tanβ and tanγ; α,β,γ ≠ (2n-1)π/2, n ∈ N be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of ΔABC coincides with origin and its orthocenter lies on y-axis, then the value of (cos(3α) + cos(3β) + cos(3γ)) / (cosα cosβ cosγ) is equal to ______.
-
1 Answer
-
If the orthocenter and circumcenter of a triangle both lie on the y-axis, the centroid also lies on the y-axis.
The x-coordinate of the centroid is (x1 + x2 + x3) / 3. If the vertices are (cos α, sin α), (cos β, sin β), (cos γ, sin γ), then the x-coordinate of the centroid is (cos α + cos β + cos γ) / 3.
Since the centroid lies on the y-axis, its x-coordinate is 0.
cos α + cos β + cos γ = 0Using the identity: If a + b + c = 0, then a^3 + b^3 + c^3 = 3abc.
Let a = cos α, b = cos β, c = cos γ.
Then, cos^3 α + cos^3 β + cos^3 γ = 3 * cos &alph...more
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r 2 < 5 r > 3 … (2)
–3 < r < 7 (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and
->
1 + sin2q = 7 – 7 sin2q
->8sin2q = 6
->
->

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒ β = 3.2
Ellipse passes through (2.4, 3.2)
⇒
&
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers