11.35 Find the typical de Broglie wavelength associated with a He atom in helium gas at room temperature (27 °C) and 1 atm pressure; and compare it with the mean separation between two atoms under these conditions.

0 8 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    4 months ago

    11.35 Room temperature, T = 27 ?  = 300 K

    Atmospheric pressure, P = 1 atm = 1.01 × 10 5  Pa

    Atomic weight of helium atom = 4

    Avogadro’s number, N A  = 6.023 × 10 23

    Boltzmann’s constant, k = 1.38 × 10 - 23  J m o l - 1 K - 1

    Planck’s constant, h = 6.626 × 10 - 34  Js

    Average energy of a gas at temperature T is given as:

    E = 3 2 kT = 3 2 × 1.38 × 10 - 23 × 300  = 6.21 × 10 - 21 J

    De Broglie wavelength is given as

    λ = h 2 m E  , where m = mass of He atom = A t o m i c w e i g h t A v o g a d r o ' s n u m b e r  = 4 6.023 × 10 23

    m = 6.641 × 10 - 24  gm = 6.641 × 10 - 27 kg

    λ = 6.626 × 10 - 34 2 × 6.641 × 10 - 27 × 6.21 × 10 - 21 = 7.29 × 10 - 11 m

    We have ideal gas formula:

    PV = RT

    PV = kNT

    V N = k T P          

    Where, V = volume of the gas

    N = number of moles of the gas

    Mea

    ...more

Similar Questions for you

R
Raj Pandey

Based on theory

V
Vishal Baghel

z² × (13.6) (1 - ¼) = 3 × (13.6)
z = 2 . (i)
h/√2mk? = (1/2.3) × h/√2mk?
=> k? = (2.3)²k? = 5.25k? (ii)
Now, k? = E? - Φ
k? = E? - Φ = z²E? - Φ
∴ k? /k? = (10.2 - Φ)/ (4 × 10.2 - Φ) = 1/5.25
=> Φ = 3eV

V
Vishal Baghel

  K . E 1 = 1 2 3 0 8 0 0 ? - (i)

  K . E 2 = 2 K . E 1 = 1 2 3 0 5 0 0 ? - (ii)

from (i) & (ii)

? = 0 . 6 1 5  ev

V
Vishal Baghel

hu = hu0 + K.E

Cases u = 2u0

h2u0 = hu0 + K.E1

K.E1 = hu0

1 2 m v 1 2 = h υ 0

v 1 2 = 2 h υ 0 m  

v 1 = 2 h υ 0 m - (1)      

Now, cases 2

h 5u0 = hu0 + k.E2

k.E2 = 4hu0

1 2 m v 2 2 = 4 h υ 0

v2 =     8 h υ 0 m   - (2)

v 2 v 1 = 8 2 = 2          

v2 = 2v1

A
alok kumar singh

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f(x)=2x23x2x2=2x24x+x2x2=2x(x2)+1(x2)x2=(2x+1)(x2)x2=2x+1limx2f(x)=2x+1=limh02(2h)+1=4+1=5limx2+f(x)=2x+1=limh02(2+h)+1=4+1=5limx2f(x)=5Aslimx2f(x)=limx2+f(x)=limx2f(x)=5Hence,f(x)iscontinuousatx=2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post