A magnetic field B = B0sin (ωt)k covers a large region where a wire AB slides smoothly over two parallel conductors separated by a distance d (figure). The wires are in the x-y plane. The wire AB (of length d) has resistance R and the parallel wires have negligible resistance. If AB is moving with velocity v, what is the current in the circuit. What is the force needed to keep the wire moving at constant velocity?

A magnetic field B = B0sin (ωt)k covers a large region where a wire AB slides smoothly over two parallel conductors separated by a distance d (figure). The wires are in the x-y plane. The wire AB (of length d) has resistance R and the parallel wires have negligible resistance. If AB is moving with velocity v, what is the current in the circuit. What is the force needed to keep the wire moving at constant velocity?
-
1 Answer
-
This is a long answer type question as classified in NCERT Exemplar
Let us assume that parallel wires at are y=0 i.e along x-axis and y=d.at t=0, AB has x=0 i.e along y-axis and moves with a velocity v
Motional emf across AB is = (B0sinwt)vd (-j)
Emf due to change in field along OBAC = -B0wcoswt x (t)d
Total emf in the circuit = emf due to change in field (along OBAC)+ the motional emf across AB= - B0d {wx coswt+v sinwt}
Electric current in clockwise direction is given by = (wxcoswt+vsinwt)
The force acting on the conductor is given by F= iLbsin90=iLb
Substituting the values
F= (wx coswt+v sinwt) × d &time
...more
Similar Questions for you
Bv = B sin 60°
->
M = φ? /I? = (B? A? )/I? = [ (μ? I? /2R? )πR? ²]/I?
[Diagram of two concentric coils]
M = (μ? πR? ²)/ (2R? )
M ∝ R? ²/R?
(A) The magnet's entry
R =
L = 2 mH
E = 9V
Just after the switch ‘S’ is closed, the inductor acts as open circuit.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers