The magnitude of vectors in the given figure are equal. The direction of with x-axis will be:-
The magnitude of vectors in the given figure are equal. The direction of with x-axis will be:-
Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>+</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>+</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> <mo>−</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> </span></p>
3 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
V
Answered by
6 months ago
Correct Option - 3
Detailed Solution:
Let's say
=
Similar Questions for you
Please find the solution below:
after 10 kicks,
v? = 3tî v? = 24cos 60°î + 24sin 60°? = 12î + 12√3?
v? = v? – v? = (12 – 3t)î + 12√3?
It is minimum when 12 - 3t = 0 ⇒ t = 4sec
ω = θ² + 2θ
α = (ωdω)/dθ = (θ² + 2θ) (2θ + 2)
At θ = 1rad.
ω = 3rad/s and α = 12rad/s²
a? = αR = 12 m/s² a? = ω²R = 9 m/s² A? = √ (a? ² + a? ²) = 15 m/s²
a? = v? ²/4r
a_A? = (v? ²/r²) × r = v? ²/r
a_A = 3v? ²/4r
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers
Learn more about...

Physics Motion in Plane 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
or
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
or
See what others like you are asking & answering


