The torque of a force 5i^+3j^7k^ about the origin is τ . If the force acts on a particle whose position vector is 2i^+2j^+k^, then the value of τ will be

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>1</mn> <mn>1</mn> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>+</mo> <mn>1</mn> <mn>9</mn> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>−</mo> <mn>4</mn> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mo>−</mo> <mn>1</mn> <mn>1</mn> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>+</mo> <mn>9</mn> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>−</mo> <mn>1</mn> <mn>6</mn> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mo>−</mo> <mn>1</mn> <mn>7</mn> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>+</mo> <mn>1</mn> <mn>9</mn> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>−</mo> <mn>4</mn> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>1</mn> <mn>7</mn> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>+</mo> <mn>9</mn> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>+</mo> <mn>1</mn> <mn>6</mn> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> </math> </span></p>
3 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
P
6 months ago
Correct Option - 3
Detailed Solution:

F=5i^+3j^7k^

r=2i^+2j^+k^

τ=|r*F|=|i^j^k^21537|=i^ (k13)j^ (145)+k^ (610)=17i^+19j^4k^

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

L ? = r ? * m v ?

= ( 3 i ^ ? j ^ ) * ( 3 j ^ + k ^ )

= 9 k ^ + 3 ( ? j ^ ) ? i ^

= ? i ^ ? 3 j ^ + 9 k ^

| L ? | = 1 + 9 + 8 1 = 9 1

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

physics ncert exemplar solutions class 12th chapter two 2025

physics ncert exemplar solutions class 12th chapter two 2025

View Exam Details

Most viewed information

SummarySummary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering