100. For the differential equation of the family of the circles in the first quadrant which touch the coordinate axes.
100. For the differential equation of the family of the circles in the first quadrant which touch the coordinate axes.
-
1 Answer
-
The equation of a circle in the first quadrant with centre (a, a) and radius (a) which touches the coordinate axes is:
Differentiating equation (1) with respect to x, we get:
Substituting the value of a in equation (1), we get:
Hence, the required differential equation of the family of circles is
Similar Questions for you
l + m – n = 0
l + m = n . (i)
l2 + m2 = n2
Now from (i)
l2 + m2 = (l + m)2
=> 2lm = 0
=>lm = 0
l = 0 or m = 0
=> m = n Þ l = n
if we take direction consine of line
cos a =
x = 0, y = 0
now at x =
Differentiating
y.
Put and
dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers