50. Find the coordinates of the foot of perpendicular from the point (–1, 3) to theline 3x – 4y – 16 = 0.

50. Find the coordinates of the foot of perpendicular from the point (–1, 3) to theline 3x – 4y – 16 = 0.
-
1 Answer
-
50. Let P(-1, 3) be the given point and Q(x, y,) be the Co-ordinate of the foot of perpendicular
So, slope of line 3x - 4y - 16 = 0 is
And slope of line segment joining P(-1, 3) and Q(x, y,) is
As they are perpendicular we can write as,
(y1-3)3 = - 4(x1 +1)
3y1- 9 = - 4x1- 4.
4x1 + 3y1-9 + 4 = 0
4x1 + 3y1-5 = 0 ___ (1)
As point Q(x1, y1) lies on the line 3x- 4y - 16 = 0 it must satisfy the equation hence,
3x1- 4y1- 16 = 0 ____ (2)
Now, multiplying equation (1) by 4 and equation (2) by 3 and adding then,
4× (4x1 + 3y1- 5) + 3(3x1- 4y1- 16) = 0.
16x1 + 12y1- 20 + 9x1- 12y1- 48 = 0
25x1 = 48 + 20
.
Putting value of x1 in equation (1) w
...more
Similar Questions for you
Eqn : y – 0 = tan45° (x – 9) Þ y = (x – 9)
Option (B) is correct
|r1 – r2| < c1c2 < r1 + r2
->
Now,
(y – 2) = m (x – 8)
⇒ x-intercept
⇒
⇒ y-intercept
⇒ (–8m + 2)
⇒ OA + OB =
->
->
->
->Minimum = 18
Kindly consider the following figure
According to question,
Equation of required line is
Obviously B (2, 2) satisfying condition (i)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers