52. If p and q are the lengths of perpendiculars from the origin to the lines x cos
q − ysinq = k cos2 and x sec q + y cosec q = k, respectively, provethat p2 + 4q2 = k2.
52. If p and q are the lengths of perpendiculars from the origin to the lines x cos q − ysinq = k cos2 and x sec q + y cosec q = k, respectively, provethat p2 + 4q2 = k2.
-
1 Answer
-
52. The given equation lines are.
line 1: xcosθ-y sin θcos 2θ
⇒ xcosθ-y sin θ - kcos 2θ = 0
The perpendicular distance from origin (0,0) to line 1 is
Similar Questions for you
Eqn : y – 0 = tan45° (x – 9) Þ y = (x – 9)
Option (B) is correct
|r1 – r2| < c1c2 < r1 + r2
->
Now,
(y – 2) = m (x – 8)
⇒ x-intercept
⇒
⇒ y-intercept
⇒ (–8m + 2)
⇒ OA + OB =
->
->
->
->Minimum = 18
Kindly consider the following figure
According to question,
Equation of required line is
Obviously B (2, 2) satisfying condition (i)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers