Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
97. For each of the exercises given below verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
97. For each of the exercises given below verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
-
1 Answer
-
(i)
Differentiating both sides with respect to x, we get:
Again, differentiating both sides with respect to x, we get:
Now, on substituting the values of and in the differential equation, we get:
L.H.S
Therefore, Function given by equation (i) is a solution of differential equation. (ii).
(ii)
Differentiating both sides with respect to x, we get:
Again, differentiating both sides with respect to x, we get:
Now, on substituting the values of and in the L.H.S of the given differential equation, we get:
Therefore, Function given by equation (i) is solution of differential equation (ii)
(iii)&nb
...more(i)
Differentiating both sides with respect to x, we get:
Again, differentiating both sides with respect to x, we get:
Now, on substituting the values of and in the differential equation, we get:
L.H.S
Therefore, Function given by equation (i) is a solution of differential equation. (ii).
(ii)
Differentiating both sides with respect to x, we get:
Again, differentiating both sides with respect to x, we get:
Now, on substituting the values of and in the L.H.S of the given differential equation, we get:
Therefore, Function given by equation (i) is solution of differential equation (ii)
(iii)
Differentiating both sides with respect to x, we get:
Again, differentiating both sides with respect to x, we get:
Substituting the value of in the L.H.S. of the given differential equation, we get:
Therefore, Function given by equation (i) is a solution of differential equation (ii).
(iv)
Differentiating both sides with respect to x, we get:
Substituting the value of in the L.H.S. of the given differential equation, we get:
Therefore, Function given by equation (i) is a solution of differential equation (ii).
less<p><strong>(i)</strong> <span title="Click to copy mathml"><math><mrow><mi>y</mi><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></p><p>Differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mrow><mo>(</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mrow><mo>(</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup></mrow><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mrow><mo>(</mo><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>x</mi></mrow></mtd></mtr></mtable></math></span></p><p>Again, differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>x</mi></mrow></math></span></p><p>Now, on substituting the values of <span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span> in the differential equation, we get:</p><p>L.H.S</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mi>x</mi><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mn>2</mn><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>−</mo><mi>x</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mi>x</mi><mrow><mo>(</mo><mrow><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mrow><mo>(</mo><mrow><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>x</mi></mrow><mo>)</mo></mrow><mo>−</mo><mi>x</mi><mrow><mo>(</mo><mrow><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mi>b</mi><mi>x</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>x</mi></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mrow><mn>2</mn><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>4</mn><mi>x</mi></mrow><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mrow><mi>a</mi><mi>x</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mn>2</mn><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>6</mn><mi>x</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>≠</mo><mn>0</mn></mrow></mtd></mtr></mtable></math></span></p><p>Therefore, Function given by equation (i) is a solution of differential equation. (ii).</p><p><strong>(ii) </strong><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow></math></span></p><p>Differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mo>.</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>b</mi><mo>.</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mo>.</mo><mrow><mo>(</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mrow><mo>(</mo><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow></mtd></mtr></mtable></math></span></p><p>Again, differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mrow><mo>(</mo><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mrow><mo>(</mo><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mo>)</mo></mrow><mo>.</mo><mrow><mo>[</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow><mo>]</mo></mrow><mo>+</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mrow><mo>[</mo><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mrow><mo>(</mo><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mo>)</mo></mrow><mo stretchy="false">(</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>−</mo><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mrow><mo>[</mo><mrow><mn>2</mn><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo stretchy="false">(</mo><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow></mrow></mtd></mtr></mtable></math></span></p><p>Now, on substituting the values of <span title="Click to copy mathml"><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow></math></span> in the L.H.S of the given differential equation, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mn>2</mn><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mn>2</mn><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo stretchy="false">(</mo><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mrow><mo>(</mo><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mo>)</mo></mrow><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow><mo>]</mo></mrow><mo>+</mo><mn>2</mn><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>−</mo><mn>2</mn><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>2</mn><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mn>2</mn><mi>b</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>2</mn><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo>−</mo><mn>2</mn><mi>a</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>2</mn><mi>a</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi><mo>+</mo><mn>2</mn><mi>b</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mrow><mo>(</mo><mrow><mn>2</mn><mi>b</mi><mo>−</mo><mn>2</mn><mi>a</mi><mo>−</mo><mn>2</mn><mi>b</mi><mo>+</mo><mn>2</mn><mi>a</mi></mrow><mo>)</mo></mrow><mi>c</mi><mi>o</mi><mi>s</mi><mi>x</mi></mrow><mo>]</mo></mrow><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mrow><mo>[</mo><mrow><mrow><mo>(</mo><mrow><mo>−</mo><mn>2</mn><mi>a</mi><mo>−</mo><mn>2</mn><mi>b</mi><mo>+</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn><mi>b</mi></mrow><mo>)</mo></mrow><mi>s</mi><mi>i</mi><mi>n</mi><mi>x</mi></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></math></span></p><p>Therefore, Function given by equation (i) is solution of differential equation (ii)</p><p><strong>(iii)</strong> <span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>=</mo><mi>x</mi><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi></mrow></math></span></p><p>Differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><mi>x</mi><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo>+</mo><mi>x</mi><mo>.</mo><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo>.</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo>+</mo><mn>3</mn><mi>x</mi><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi></mrow></mtd></mtr></mtable></math></span></p><p>Again, differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><mi>x</mi><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mn>3</mn><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo>+</mo><mn>3</mn><mrow><mo>[</mo><mrow><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo>+</mo><mi>x</mi><mo stretchy="false">(</mo><mo>−</mo><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo stretchy="false">)</mo><mo>.</mo><mn>3</mn></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mn>6</mn><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo>−</mo><mn>9</mn><mi>x</mi><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi></mrow></mtd></mtr></mtable></math></span></p><p>Substituting the value of <span title="Click to copy mathml"><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span> in the L.H.S. of the given differential equation, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mn>9</mn><mi>y</mi><mo>−</mo><mn>6</mn><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mo stretchy="false">(</mo><mn>6</mn><mo>.</mo><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi><mo>−</mo><mn>9</mn><mi>x</mi><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mn>9</mn><mi>x</mi><mi>s</mi><mi>i</mi><mi>n</mi><mn>3</mn><mi>x</mi><mo>−</mo><mn>6</mn><mi>c</mi><mi>o</mi><mi>s</mi><mn>3</mn><mi>x</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></math></span></p><p>Therefore, Function given by equation (i) is a solution of differential equation (ii).</p><p><strong>(iv)</strong> <span title="Click to copy mathml"><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>2</mn><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi></mrow></math></span></p><p>Differentiating both sides with respect to x, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mn>2</mn><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mrow><mo>[</mo><mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mi>x</mi><mo>=</mo><mrow><mo>[</mo><mrow><mn>2</mn><mi>y</mi><mo>.</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mo>.</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>y</mi></mrow></mfrac><mo>.</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>]</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo stretchy="false">(</mo><mn>2</mn><mi>y</mi><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mo>+</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>⇒</mo><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow></mtd></mtr></mtable></math></span></p><p>Substituting the value of <span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow></math></span> in the L.H.S. of the given differential equation, we get:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>−</mo><mi>x</mi><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>2</mn><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>y</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mfrac><mo>−</mo><mi>x</mi><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mo stretchy="false">)</mo><mo>.</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>y</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mfrac><mo>−</mo><mi>x</mi><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mi>x</mi><mi>y</mi><mo>−</mo><mi>x</mi><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></math></span></p><p>Therefore, Function given by equation (i) is a solution of differential equation (ii).</p>
Similar Questions for you
l + m – n = 0
l + m = n . (i)
l2 + m2 = n2
Now from (i)
l2 + m2 = (l + m)2
=> 2lm = 0
=>lm = 0
l = 0 or m = 0
=> m = n Þ l = n
if we take direction consine of line
cos a =
x = 0, y = 0
now at x =
Differentiating
y.
Put and
dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers
Learn more about...
-
Maths Differential Equations 2021 Exam
View Exam Details -
Maths Ncert Solutions class 12th 2023 Exam
View Exam Details
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts