Let PQ be a diameter of the circle x² + y² = 9. If α and β are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2 respectively, then the maximum value of αβ is......
Let PQ be a diameter of the circle x² + y² = 9. If α and β are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2 respectively, then the maximum value of αβ is......
-
1 Answer
-
Let P (2cosθ, 2sinθ)
∴ Q (-2cosθ, -2sinθ)
Given line x+y-2=0
∴ α = |2cosθ + 2sinθ – 2| / √2
β = |-2cosθ - 2sinθ – 2| / √2
∴ αβ = √2 (cosθ + sinθ – 1) · √2 (cosθ + sinθ + 1)
= 2|cos²θ + sin²θ + 2sinθcosθ – 1| = 2|sin2θ|
Max |sin2θ| = 1
∴ maximum αβ = 2.
Similar Questions for you
Eqn : y – 0 = tan45° (x – 9) Þ y = (x – 9)
Option (B) is correct
|r1 – r2| < c1c2 < r1 + r2
->
Now,
(y – 2) = m (x – 8)
⇒ x-intercept
⇒
⇒ y-intercept
⇒ (–8m + 2)
⇒ OA + OB =
->
->
->
->Minimum = 18
Kindly consider the following figure
According to question,
Equation of required line is
Obviously B (2, 2) satisfying condition (i)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers