11.2 The work function of cesium metal is 2.14 eV. When light of frequency 6 ×1014 Hz is incident on the metal surface, photoemission of electrons occurs. What is the

(a) Maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) Maximum speed of the emitted photoelectrons?

0 3 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    4 months ago

    11.2 Work function of cesium metal, 0 = 2.14 eV

    Frequency of light, ν = 6 ×1014 Hz

    The maximum kinetic energy is given by the photoelectric effect, K = hν-0 ,

    Where h = Planck’s constant = 6.626 ×10-34 Js, 1 eV = 1.602 ×10-19 J

    K = 6.626×10-34×6×10141.602×10-19-2.14 = 0.345 eV

    Hencethemaximumkineticenergyoftheemittedelectronis0.3416eV

    For stopping potential V0 , we can write the equation for kinetic energy as:

    K = V0 , where e = charge of an electron = 1.6×10-19

    or V0=Ke = 0.345×1.602×10-191.6×10-19 = 0.345 V

    Hence, the stopping potential is 0.345 V

    Maximum speed of the emitted photoelectrons = v

    Kinetic energy K = 12 m v2 , where m = mass of

    ...more

Similar Questions for you

R
Raj Pandey

Based on theory

V
Vishal Baghel

z² × (13.6) (1 - ¼) = 3 × (13.6)
z = 2 . (i)
h/√2mk? = (1/2.3) × h/√2mk?
=> k? = (2.3)²k? = 5.25k? (ii)
Now, k? = E? - Φ
k? = E? - Φ = z²E? - Φ
∴ k? /k? = (10.2 - Φ)/ (4 × 10.2 - Φ) = 1/5.25
=> Φ = 3eV

V
Vishal Baghel

  K . E 1 = 1 2 3 0 8 0 0 ? - (i)

  K . E 2 = 2 K . E 1 = 1 2 3 0 5 0 0 ? - (ii)

from (i) & (ii)

? = 0 . 6 1 5  ev

V
Vishal Baghel

hu = hu0 + K.E

Cases u = 2u0

h2u0 = hu0 + K.E1

K.E1 = hu0

1 2 m v 1 2 = h υ 0

v 1 2 = 2 h υ 0 m  

v 1 = 2 h υ 0 m - (1)      

Now, cases 2

h 5u0 = hu0 + k.E2

k.E2 = 4hu0

1 2 m v 2 2 = 4 h υ 0

v2 =     8 h υ 0 m   - (2)

v 2 v 1 = 8 2 = 2          

v2 = 2v1

A
alok kumar singh

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f(x)=2x23x2x2=2x24x+x2x2=2x(x2)+1(x2)x2=(2x+1)(x2)x2=2x+1limx2f(x)=2x+1=limh02(2h)+1=4+1=5limx2+f(x)=2x+1=limh02(2+h)+1=4+1=5limx2f(x)=5Aslimx2f(x)=limx2+f(x)=limx2f(x)=5Hence,f(x)iscontinuousatx=2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post