7.8 A non-uniform bar of weight W is suspended at rest by two strings of negligible weight as shown in Fig.7.39. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is 2 m long. Calculate the distance d of the centre of gravity of the bar from its left end.
For rotational equilibrium, on taking the torque about the centre of gravity, we have
T1 x d = T2 (2-d)
T1 x 0.8d = T2 x 0.6 (2-d)
(4/3)T2 x 0.8d = T2 x 0.6 (2-d)
(4/3) x 0.8d = 0.6 (2-d)
1.07d = 1.2 – 0.6d
d = 0.72
So the c.g. of the given bar lies at 0.72 m from its left end.
<p>A free body diagram needs to be drawn.</p><div><div><picture><source srcset="https://images.shiksha.com/mediadata/images/articles/1729061750php45aGHR_480x360.jpeg" media=" (max-width: 500px)"><img src="https://images.shiksha.com/mediadata/images/articles/1729061750php45aGHR.jpeg" alt="" width="250" height="158"></picture></div></div><p> </p><p>The length of the bar, l = 2 m</p><p>T1 and T2</p><p>At translational equilibrium, we have <span title="Click to copy mathml"><math><mover accent="true"><mrow><mrow><msub><mrow><mrow><mi>L</mi></mrow></mrow><mrow><mrow><mi>q</mi></mrow></mrow></msub></mrow></mrow><mo>? </mo></mover><mo>=</mo><mi></mi><mover accent="true"><mrow><mrow><msub><mrow><mrow><mi>L</mi></mrow></mrow><mrow><mrow><mi>R</mi></mrow></mrow></msub></mrow></mrow><mo>? </mo></mover></math></span> = <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>T</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></math></span></p><p> (T1 / T2) = ( <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>T</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></math></span> / <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>T</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub><mi></mi><mrow><mrow><mi mathvariant="normal">sin</mi></mrow><mo>? </mo><mrow><mn>36.9</mn><mo>°</mo></mrow></mrow></math></span> = 4/3</p><p>T1 = (4/3)T2</p><p>For rotational equilibrium, on taking the torque about the centre of gravity, we have</p><p>T1 <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>T</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub><mi></mi><mrow><mrow><mi mathvariant="normal">sin</mi></mrow><mo>? </mo><mrow><mn>53.1</mn><mo>°</mo></mrow></mrow></math></span> x d = T2 <span title="Click to copy mathml"><math><mrow><mrow><mi mathvariant="normal">sin</mi></mrow><mo>? </mo><mrow><mn>53.1</mn><mo>°</mo></mrow></mrow></math></span> (2-d)</p><p>T1 x 0.8d = T2 x 0.6 (2-d)</p><p> (4/3)T2 x 0.8d = T2 x 0.6 (2-d)</p><p> (4/3) x 0.8d = 0.6 (2-d)</p><p>1.07d = 1.2 – 0.6d</p><p>d = 0.72</p><p>So the c.g. of the given bar lies at 0.72 m from its left end.</p>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.