A uniform disc of radius R, is resting on a table on its rim. The coefficient of friction between disc and table is µ (Fig). Now the disc is pulled with a force F as shown in the figure. What is the maximum value of F for which the disc rolls without slipping ?
This is a long answer type question as classified in NCERT Exemplar
Frictional force f is acting in the opposite direction of F . let the acceleration of centre of mass of disc be a then
F-f=Ma where M is the mass of the disc
fR= (1/2 MR2)
so fR= (1/2MR2) (a/R)
Ma=2f
From the above equation
F = F/3
F<=
f/3 <
F=3
<p><span data-sheets-root="1">This is a long answer type question as classified in NCERT Exemplar</span></p><p>Frictional force f is acting in the opposite direction of F . let the acceleration of centre of mass of disc be a then</p><p>F-f=Ma where M is the mass of the disc</p><p><span contenteditable="false"> <math> <mi>α</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mi>a</mi> </mrow> </mrow> <mrow> <mrow> <mi>R</mi> </mrow> </mrow> </mfrac> </math> </span></p><p><span contenteditable="false"> <math> <mi>τ</mi> <mo>=</mo> <mi>I</mi> <mi>α</mi> </math> </span></p><p>fR= (1/2 MR<sup>2</sup>)<span contenteditable="false"> <math> <mi>α</mi> </math> </span></p><p>so fR= (1/2MR<sup>2</sup>) (a/R)</p><p>Ma=2f</p><p>From the above equation</p><p>F = F/3</p><p>F<<span contenteditable="false"> <math> <mi>μ</mi> <mi>N</mi> </math> </span>=<span contenteditable="false"> <math> <mi>μ</mi> <mi>M</mi> <mi>g</mi> </math> </span></p><p>f/3 <<span contenteditable="false"> <math> <mi>μ</mi> <mi>M</mi> <mi>g</mi> </math> </span></p><p>F=3<span contenteditable="false"> <math> <mi>μ</mi> <mi>M</mi> <mi>g</mi> </math> </span></p>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.