(i) In the explanation of photoeletric effect, we assume one photon of frequency v collides with an electron and transfers its energy. This leads . to the equation for the maximum energy Emaxof the emitted electron as Emax = hv – ɸ0
where ɸ0  is the work function of the metal. If an electron absorbs 2 photons (each of frequency v), what will be the maximum energy for the emitted electron?
(ii) Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

0 4 Views | Posted 3 months ago
Asked by Shiksha User

  • 1 Answer

  • A

    Answered by

    alok kumar singh | Contributor-Level 10

    3 months ago

    This is a Short Answer Type Questions as classified in NCERT Exemplar

    Explanation- (i) Here it is given that, an electron absorbs 2 photons each of frequency ν then ν where, v′ is the frequency of emitted electron.

    Given, Emax= hv- ? 0

    Now, maximum energy for emitted electrons is Emax= h2v- ? 0 = 2 h v - ? 0

    (ii) The probability of absorbing 2 photons by the same electron is very low. Hence, such emission will be negligible

     

Similar Questions for you

R
Raj Pandey

Based on theory

V
Vishal Baghel

z² × (13.6) (1 - ¼) = 3 × (13.6)
z = 2 . (i)
h/√2mk? = (1/2.3) × h/√2mk?
=> k? = (2.3)²k? = 5.25k? (ii)
Now, k? = E? - Φ
k? = E? - Φ = z²E? - Φ
∴ k? /k? = (10.2 - Φ)/ (4 × 10.2 - Φ) = 1/5.25
=> Φ = 3eV

V
Vishal Baghel

  K . E 1 = 1 2 3 0 8 0 0 ? - (i)

  K . E 2 = 2 K . E 1 = 1 2 3 0 5 0 0 ? - (ii)

from (i) & (ii)

? = 0 . 6 1 5  ev

V
Vishal Baghel

hu = hu0 + K.E

Cases u = 2u0

h2u0 = hu0 + K.E1

K.E1 = hu0

1 2 m v 1 2 = h υ 0

v 1 2 = 2 h υ 0 m  

v 1 = 2 h υ 0 m - (1)      

Now, cases 2

h 5u0 = hu0 + k.E2

k.E2 = 4hu0

1 2 m v 2 2 = 4 h υ 0

v2 =     8 h υ 0 m   - (2)

v 2 v 1 = 8 2 = 2          

v2 = 2v1

A
alok kumar singh

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f(x)=2x23x2x2=2x24x+x2x2=2x(x2)+1(x2)x2=(2x+1)(x2)x2=2x+1limx2f(x)=2x+1=limh02(2h)+1=4+1=5limx2+f(x)=2x+1=limh02(2+h)+1=4+1=5limx2f(x)=5Aslimx2f(x)=limx2+f(x)=limx2f(x)=5Hence,f(x)iscontinuousatx=2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post